L-functions for line graphs of semiregular bipartite graphs
نویسندگان
چکیده
منابع مشابه
The semicircle law for semiregular bipartite graphs
We give the (Ahumada type) Selberg trace formula for a semiregular bipartite graph G: Furthermore, we discuss the distribution on arguments of poles of zeta functions of semiregular bipartite graphs. As an application, we present two analogs of the semicircle law for the distribution of eigenvalues of specified regular subgraphs of semiregular bipartite graphs. r 2003 Elsevier Science (USA). Al...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملON Q–INTEGRAL (3, s)–SEMIREGULAR BIPARTITE GRAPHS
Let G be a simple graph with adjacency matrix A (= AG). The eigenvalues and the spectrum of A are also called the eigenvalues and the spectrum of G, respectively. If we consider a matrix Q = D + A instead of A, where D is the diagonal matrix of vertex–degrees (in G), we get the signless Laplacian eigenvalues and the signless Laplacian spectrum, respectively. For short, the signless Laplacian ei...
متن کاملNormalized rational semiregular graphs
Let G be a graph and let A and D be the adjacency matrix of G and diagonal matrix of vertex degrees of G respectively. If each vertex degree is positive, then the normalized adjacency matrix of G is  = D−1/2AD−1/2. A classification is given of those graphs for which the all eigenvalues of the normalized adjacency matrix are integral. The problem of determining those graphs G for which λ ∈ Q fo...
متن کاملHamilton decompositions of line graphs of some bipartite graphs
Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2006
ISSN: 0024-3795
DOI: 10.1016/j.laa.2005.11.018